Logarithm Formula

Here we are providing logarithm formulas.

handbook_maths_e_l_eng_1634384116-003

LOGARITHM

1. LOGARITHM OF A NUMBER :

The logarithm of the number N N N\mathrm{N}N to the base ‘ a a a\mathrm{a}a ‘ is the exponent indicating the power to which the base ‘a’ must be raised to obtain the number N N NNN. This number is designated as log a N log a N log_(a)N\log _{a} NlogaN.
(a) log a N = x log a N = x log_(a)N=x\log _{a} \mathrm{~N}=\mathrm{x}loga N=x, read as log log log\loglog of N N N\mathrm{N}N to the base a a x = N a a x = N a<=>a^(x)=N\mathrm{a} \Leftrightarrow \mathrm{a}^{\mathrm{x}}=\mathrm{N}aax=N If a = 10 a = 10 a=10\mathrm{a}=10a=10 then we write log N log N log N\log \mathrm{N}logN or log 10 N log 10 N log_(10)N\log _{10} \mathrm{~N}log10 N and if a = e a = e a=e\mathrm{a}=ea=e we write ln N ln N ln N\ln \mathrm{N}lnN or log e N log e N log_(e)N\log _{e} \mathrm{~N}loge N (Natural log log log\loglog )
(b) Necessary conditions: N > 0 ; a > 0 ; a 1 N > 0 ; a > 0 ; a 1 N > 0;a > 0;a!=1\mathrm{N}>0 ; \mathrm{a}>0 ; \mathrm{a} \neq 1N>0;a>0;a1
(c) log a 1 = 0 log a 1 = 0 log_(a)1=0\log _{a} 1=0loga1=0
(d) log a a = 1 log a a = 1 log_(a)a=1\log _{\mathrm{a}} \mathrm{a}=1logaa=1
(e) log 1 a a = 1 log 1 a a = 1 log_((1)/(a))a=-1\log _{\frac{1}{a}} a=-1log1aa=1
(f) log a ( x . y ) = log a x + log a y ; x , y > 0 log a ( x . y ) = log a x + log a y ; x , y > 0 log_(a)(x.y)=log_(a)x+log_(a)y;x,y > 0\log _{a}(x . y)=\log _{a} x+\log _{a} y ; x, y>0loga(x.y)=logax+logay;x,y>0
(g) log a ( x y ) = log a x log a y ; x , y > 0 log a x y = log a x log a y ; x , y > 0 log_(a)((x)/(y))=log_(a)x-log_(a)y;x,y > 0\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y ; x, y>0loga(xy)=logaxlogay;x,y>0
(h) log a x p = p log a x ; x > 0 log a x p = p log a x ; x > 0 log_(a)x^(p)=plog_(a)x;x > 0\log _{a} x^{p}=p \log _{a} x ; x>0logaxp=plogax;x>0
(i) log a q x = 1 q log a x ; x > 0 log a q x = 1 q log a x ; x > 0 log_(a^(q))x=(1)/(q)log_(a)x;x > 0\log _{a^{q}} x=\frac{1}{q} \log _{a} x ; x>0logaqx=1qlogax;x>0
(j) log a x = 1 log x a ; x > 0 , x 1 log a x = 1 log x a ; x > 0 , x 1 log_(a)x=(1)/(log_(x)a);x > 0,x!=1\log _{a} x=\frac{1}{\log _{x} a} ; x>0, x \neq 1logax=1logxa;x>0,x1
(k) log a x = log b x / log b a ; x > 0 , a , b > 0 , b 1 , a 1 log a x = log b x / log b a ; x > 0 , a , b > 0 , b 1 , a 1 log_(a)x=log_(b)x//log_(b)a;x > 0,a,b > 0,b!=1,a!=1\log _{a} x=\log _{b} x / \log _{b} a ; x>0, a, b>0, b \neq 1, a \neq 1logax=logbx/logba;x>0,a,b>0,b1,a1
(l) log a b log b c log c d = log a d ; a , b , c , d > 0 , 1 log a b log b c log c d = log a d ; a , b , c , d > 0 , 1 log_(a)b*log_(b)c*log_(c)d=log_(a)d;a,b,c,d > 0,!=1\log _{a} b \cdot \log _{b} c \cdot \log _{c} d=\log _{a} d ; a, b, c, d>0, \neq 1logablogbclogcd=logad;a,b,c,d>0,1
(m) a log a x = x ; a > 0 , a 1 a log a x = x ; a > 0 , a 1 a^(log_(a)x)=x;a > 0,a!=1a^{\log _{a} x}=x ; a>0, a \neq 1alogax=x;a>0,a1
(n) a log b c = c log b a ; a , b , c > 0 ; b 1 a log b c = c log b a ; a , b , c > 0 ; b 1 a^(log_(b)c)=c^(log_(b)a);a,b,c > 0;b!=1a^{\log _{b} c}=c^{\log _{b} a} ; a, b, c>0 ; b \neq 1alogbc=clogba;a,b,c>0;b1
(o) log a x < log a y [ x < y if a > 1 x > y if 0 < a < 1 log a x < log a y x < y  if  a > 1 x > y  if  0 < a < 1 log_(a)x < log_(a)y<=>[[x < y,” if “,a > 1],[x > y,” if “,0 < a < 1]:}\log _{a} x<\log _{a} y \Leftrightarrow\left[\begin{array}{llc}x<y & \text { if } & a>1 \\ x>y & \text { if } & 0<a<1\end{array}\right.logax<logay[x<y if a>1x>y if 0<a<1
(p) log a x = log a y x = y ; x , y > 0 ; a > 0 , a 1 log a x = log a y x = y ; x , y > 0 ; a > 0 , a 1 log_(a)x=log_(a)y=>x=y;x,y > 0;a > 0,a!=1\log _{a} \mathrm{x}=\log _{\mathrm{a}} \mathrm{y} \Rightarrow \mathrm{x}=\mathrm{y} ; \mathrm{x}, \mathrm{y}>0 ; \mathrm{a}>0, \mathrm{a} \neq 1logax=logayx=y;x,y>0;a>0,a1
(q) e ln a x = a x e ln a x = a x e^(ln a^(x))=a^(x)e^{\ln a^{x}}=a^{x}elnax=ax
(r) log 10 2 = 0.3010 ; log 10 3 = 0.4771 ; ln 2 = 0.693 , ln 10 = 2.303 log 10 2 = 0.3010 ; log 10 3 = 0.4771 ; ln 2 = 0.693 , ln 10 = 2.303 log_(10)2=0.3010;log_(10)3=0.4771;ln 2=0.693,ln 10=2.303\log _{10} 2=0.3010 ; \log _{10} 3=0.4771 ; \ln 2=0.693, \ln 10=2.303log102=0.3010;log103=0.4771;ln2=0.693,ln10=2.303
(s) If a > 1 a > 1 a > 1a>1a>1 then log a x < p 0 < x < a p log a x < p 0 < x < a p log_(a)x < p=>0 < x < a^(p)\log _{a} x<p \Rightarrow 0<x<a^{p}logax<p0<x<ap
(t) If a > 1 a > 1 a > 1a>1a>1 then log a x > p x > a p log a x > p x > a p log_(a)x > p=>x > a^(p)\log _{a} x>p \Rightarrow x>a^{p}logax>px>ap
(u) If 0 < a < 1 0 < a < 1 0 < a < 10<a<10<a<1 then log a x < p x > a p log a x < p x > a p log_(a)x < p=>x > a^(p)\log _{a} x<p \Rightarrow x>a^{p}logax<px>ap
(v) If 0 < a < 1 0 < a < 1 0 < a < 10<a<10<a<1 then log a x > p 0 < x < a p log a x > p 0 < x < a p log_(a)x > p=>0 < x < a^(p)\log _{a} x>p \Rightarrow 0<x<a^{p}logax>p0<x<ap

Leave a Comment